If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-94=0
a = 2; b = 4; c = -94;
Δ = b2-4ac
Δ = 42-4·2·(-94)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16\sqrt{3}}{2*2}=\frac{-4-16\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16\sqrt{3}}{2*2}=\frac{-4+16\sqrt{3}}{4} $
| 0=55-(1.6*d) | | 3h=201 | | 60/16=45/x | | {3}{5}g-{1}{3}=-{10}{3} | | 20+12x=9x-10 | | 16/60=x/45 | | 32t^2-5=45 | | -k3=-51 | | 8x15=71 | | ⅖x-⅓+⅓x=4 | | 6s^2=0 | | 3p+17=43 | | 16000/1=x/45 | | k-12=-4 | | 10+s=7 | | 8+x/7=19 | | 13+7g=27 | | 3(-x+6)-2x=28 | | kk12=-4 | | k62+74=74 | | 5+310-4x=20 | | k-5=2.6 | | 2/5=10;v=25 | | 4x+5(10-2x)=-14 | | 9w=1 | | -2n=34 | | -5x+10–4x=-17 | | -14x+22=7x-20 | | 121g^2=81 | | 7x+9=-3x+5 | | -2{z-6}+-1=-7 | | 3.5+z=4.6 |